Issue 30, 2024

Mechanism of charge accumulation in potassium poly(heptazine imide)

Abstract

Dark photocatalysis is the ability of a photocatalyst to accumulate photocarriers during light irradiation and consume them for redox reactions under dark conditions. This phenomenon of photocatalysts storing photocarriers is known as charge accumulation. Dark photocatalysts can mitigate fluctuations in photocatalytic reaction efficiency in response to fluctuating solar irradiation. Potassium poly(heptazine imide) (K-PHI) has attracted considerable attention due to its high photocatalytic efficiency and ability to undergo dark photocatalysis. However, the detailed mechanism of charge accumulation in K-PHI remains unclear because photochromism, potassium ion desorption, and charge accumulation occur simultaneously triggered by light irradiation, limiting the comprehensive understanding of this mechanism. To elucidate the charge accumulation mechanism in K-PHI, highly oriented K-PHI thin films were prepared. Then, their fundamental physical properties and optical response of their electrical properties were investigated. We succeeded in separately observing photochromism, potassium ion desorption, and charge accumulation induced by light irradiation on K-PHI and proposed a comprehensive model to explain these phenomena. This study not only provides insights into the unique physical phenomena exhibited by K-PHI but also contributes to the development of solar energy–storage materials in the future.

Graphical abstract: Mechanism of charge accumulation in potassium poly(heptazine imide)

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2024
Accepted
08 Jul 2024
First published
09 Jul 2024
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2024,26, 20585-20597

Mechanism of charge accumulation in potassium poly(heptazine imide)

G. Seo, R. Hayakawa, Y. Wakayama, R. Ohnuki, S. Yoshioka and K. Kanai, Phys. Chem. Chem. Phys., 2024, 26, 20585 DOI: 10.1039/D4CP02012J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements