Ultrasound-assisted nucleation and growth of hydroxyl-protected and ligand-free Cs3Cu2X5 nanocrystals with bright luminescence†
Abstract
The commercial applications of lead halide perovskites are hindered by their negative environmental impact and inherent instability. Consequently, developing environmentally friendly copper-based perovskite materials is crucial for future solid-state lighting and display applications. In this study, an ultrafast high-power ultrasonic synthesis strategy was utilized to achieve uniform nucleation and growth of Cs3Cu2X5 (X = Cl, Br, I) nanocrystals (NCs) that possess remarkable luminescence properties, hydroxyl protection, and ligand-free characteristics. These Cs3Cu2X5 NCs exhibited a tunable spectral range spanning from 446 to 525 nm, accompanied by photoluminescence quantum yields (PLQYs) varying from 0.2% to 79.2%. The spectral attributes of the NCs were effectively controlled by modulating the halide type and composition. It is worth noting that density functional theory (DFT) calculations offer valuable insights into the synthesis of NCs and the selection of suitable alcohol solvents. Moreover, we successfully fabricated an efficient and stable white light-emitting diode (WLED) with a high luminous efficiency of 23 lm W−1 and CIE color coordinates of (0.3266, 0.3487). Our work provides a new strategy to synthesize Cs3Cu2X5 NCs and holds promise for their potential application in display and lighting devices.