Issue 37, 2024

Separation of oxygen from nitrogen using a graphdiyne membrane: a quantum-mechanical study

Abstract

Efficient separation of oxygen and nitrogen from air is a process of great importance for many industrial and medical applications. Two-dimensional (2D) membranes are very promising materials for separation of gases, as they offer enhanced mass transport due to their smallest atomic thickness. In this work, we examine the capacity of graphdiyne (GDY), a new 2D carbon allotrope with regular subnanometric pores, for separating oxygen (16O2) from nitrogen (14N2). A quantum-mechanical model has been applied to the calculation of the transmission probabilities and permeances of these molecules through GDY using force fields based on accurate electronic structure computations. It is found that the 16O2/14N2 selectivity (ratio of permeances) is quite high (e.g., about 106 and 102 at 100 and 300 K, respectively), indicating that GDY can be useful for separation of these species, even at room temperature. This is mainly due to the N2 transmission barrier (∼0.37 eV) which is considerably higher than the O2 one (∼0.25 eV). It is also found that molecular motions are quite confined inside the GDY pores and that, as a consequence, quantum effects (zero-point energy) are significant in the studied processes. Finally, we explore the possibility of 18O2/16O2 isotopologue separation due to these mass-dependent quantum effects, but it is found that the process is not practical since reasonable selectivities are concomitant with extremely small permeances.

Graphical abstract: Separation of oxygen from nitrogen using a graphdiyne membrane: a quantum-mechanical study

Article information

Article type
Paper
Submitted
05 Jun 2024
Accepted
30 Aug 2024
First published
02 Sep 2024
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2024,26, 24553-24563

Separation of oxygen from nitrogen using a graphdiyne membrane: a quantum-mechanical study

M. A. Rafiei, J. Campos-Martínez, M. Bartolomei, F. Pirani, A. Maghari and M. I. Hernández, Phys. Chem. Chem. Phys., 2024, 26, 24553 DOI: 10.1039/D4CP02287D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements