Experimental observation of molecular-weight growth by the reactions of o-benzyne with benzyl radicals†
Abstract
The chemistry of ortho-benzyne (o-C6H4) is of fundamental importance due to its role as an essential molecular building block in molecular-weight growth reactions. Here, we report on an experimental investigation of the reaction of o-C6H4 with benzyl (C7H7) radicals in a well-controlled flash pyrolysis experiment using a resistively heated SiC microtubular reactor at temperatures of 800–1600 K and pressures near 30 torr. To this end, the reactants o-C6H4 and C7H7 were pyrolytically generated from 1,2-diiodobenzene and benzyl bromide, respectively. Using molecular-beam time-of-flight mass spectrometry, we found that o-C6H4 associates with the benzyl to form C13H11 radicals, which decompose at higher temperatures via H-loss to form closed-shell C13H10 molecules. Our experimental results agree with earlier theoretical calculations by Matsugi and Miyoshi [Phys. Chem. Chem. Phys., 2012, 14, 9722–9728], who predicted the formation of fluorene (C13H10) + H to be the dominant reaction channel. At temperatures above 1400 K, we also observed the formation of C13H9 radicals, most likely the resonance-stabilized fluorenyl π-radical. Our study confirms that molecular-mass growth via the o-C6H4 + C7H7 reaction provides a versatile pathway for introducing five-membered rings, and hence curved structures, into polycyclic aromatic hydrocarbons.