Issue 44, 2024

Dynamic nuclear polarization pulse sequence engineering using single-spin vector effective Hamiltonians

Abstract

Dynamic nuclear polarization (DNP) has proven to be a powerful technique to enhance nuclear spin polarization by transferring the much higher electron spin polarization to nuclear spins prior to detection. While major attention has been devoted to high-field applications with continuous microwave irradiation, the introduction of fast arbitrary waveform generators is gradually increasing opportunities for the realization of pulsed DNP. Here, we describe how static-powder DNP pulse sequences may systematically be designed using single-spin vector effective Hamiltonian theory. Particular attention is devoted to the intricate interplay between two important parts of the effective first-order Hamiltonian, namely, linear field (single-spin) terms and Fourier coefficients determining scaling of the bilinear coupling terms mediating polarization transfer. We address two cases. The first case operates in the regime, where the microwave field amplitude is lower than the nuclear Larmor frequency. Here, we illustrate the predictive strength of a single-spin vector model by comparing analytical calculations with experimental DNP results at 9.8 GHz/15 MHz on trityl radicals at 80 K. The second case operates in the high-power regime, where we combine the underlying single-spin vector design principles with numerical non-linear optimization to optimize the balance between the linear terms and the bilinear Fourier coefficients in a figure of merit function. We demonstrate, numerically and experimentally, a broadband DNP pulse sequence PLATO (PoLarizAtion Transfer via non-linear Optimization) with a bandwidth of 80 MHz and optimized for a microwave field with a maximum (peak) amplitude of 32 MHz.

Graphical abstract: Dynamic nuclear polarization pulse sequence engineering using single-spin vector effective Hamiltonians

Article information

Article type
Paper
Submitted
31 Jul 2024
Accepted
22 Oct 2024
First published
22 Oct 2024

Phys. Chem. Chem. Phys., 2024,26, 28208-28219

Dynamic nuclear polarization pulse sequence engineering using single-spin vector effective Hamiltonians

A. B. Nielsen, J. P. A. Carvalho, D. L. Goodwin, N. Wili and N. C. Nielsen, Phys. Chem. Chem. Phys., 2024, 26, 28208 DOI: 10.1039/D4CP03041A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements