Issue 42, 2024

Accelerated molecular dynamics study of the interaction mechanism between small molecule inhibitors and phosphoglycerate mutase 1

Abstract

In 2020, cancer-related deaths reached 9.96 million globally, of which China accounted for 3 million, ranking first in the world. Phosphoglycerate mutase 1 (PGAM1) is a key metabolic enzyme in glycolysis, catalysing the conversion of 3-phosphoglycerate to 2-phosphoglycerate. Based on the excellent anticancer activity of PGMI-004A and HKB99, new small molecules with an anthraquinone core were synthesised to inhibit tumour growth. Developing small molecules with an anthraquinone core targeting PGAM1 may be an effective strategy for treating cancer. In this study, accelerated molecular dynamics (aMD) simulation, dynamic cross-correlation map (DCCM) calculation, principal component analysis (PCA) and free energy landscape (FEL) analysis were used to analyse conformational changes of PGAM1 caused by binding of inhibitors 8KX, 9HU and HKB. DCCM calculations and PCA showed that inhibitor binding significantly affected the kinetic behaviour of PGAM1 and conformational rearrangement of PGAM1. The binding ability and mechanism of 8KX, 9HU and HKB to PGAM1 were studied using the molecular mechanics generalised Born surface area (MM-GBSA) method. The results showed that compared with 8KX, the binding ability of 9HU and HKB to PGAM1 was enhanced by sulphonamide reversal and aminocarboxyl trifluoromethyl substitution. There were several hydrophobic interactions between inhibitors and PGAM1, providing significant contributions for inhibitor binding. Calculation of residue-based free energy decomposition revealed that F22, R90, Y92, L95, V112, W115, R116, V121, P123, P124, R191 and M206 were key residues of the PGAM1–inhibitor interaction and could be used as effective targets for designing drugs that inhibit the activity of PGAM1.

Graphical abstract: Accelerated molecular dynamics study of the interaction mechanism between small molecule inhibitors and phosphoglycerate mutase 1

Supplementary files

Article information

Article type
Paper
Submitted
23 Aug 2024
Accepted
05 Oct 2024
First published
07 Oct 2024

Phys. Chem. Chem. Phys., 2024,26, 26784-26798

Accelerated molecular dynamics study of the interaction mechanism between small molecule inhibitors and phosphoglycerate mutase 1

Y. Sun, C. Jia, S. Zhang, Q. Zhang, J. Chen and X. Liu, Phys. Chem. Chem. Phys., 2024, 26, 26784 DOI: 10.1039/D4CP03309D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements