Metal–organic framework heterojunctions for photocatalysis
Abstract
Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal–organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.