Issue 13, 2024

Recent advances in rational design for high-performance potassium-ion batteries

Abstract

The growing global energy demand necessitates the development of renewable energy solutions to mitigate greenhouse gas emissions and air pollution. To efficiently utilize renewable yet intermittent energy sources such as solar and wind power, there is a critical need for large-scale energy storage systems (EES) with high electrochemical performance. While lithium-ion batteries (LIBs) have been successfully used for EES, the surging demand and price, coupled with limited supply of crucial metals like lithium and cobalt, raised concerns about future sustainability. In this context, potassium-ion batteries (PIBs) have emerged as promising alternatives to commercial LIBs. Leveraging the low cost of potassium resources, abundant natural reserves, and the similar chemical properties of lithium and potassium, PIBs exhibit excellent potassium ion transport kinetics in electrolytes. This review starts from the fundamental principles and structural regulation of PIBs, offering a comprehensive overview of their current research status. It covers cathode materials, anode materials, electrolytes, binders, and separators, combining insights from full battery performance, degradation mechanisms, in situ/ex situ characterization, and theoretical calculations. We anticipate that this review will inspire greater interest in the development of high-efficiency PIBs and pave the way for their future commercial applications.

Graphical abstract: Recent advances in rational design for high-performance potassium-ion batteries

Article information

Article type
Review Article
Submitted
20 Jan 2024
First published
10 Jun 2024

Chem. Soc. Rev., 2024,53, 7202-7298

Recent advances in rational design for high-performance potassium-ion batteries

Y. Xu, Y. Du, H. Chen, J. Chen, T. Ding, D. Sun, D. H. Kim, Z. Lin and X. Zhou, Chem. Soc. Rev., 2024, 53, 7202 DOI: 10.1039/D3CS00601H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements