Issue 15, 2024

Colorimetric sensing for translational applications: from colorants to mechanisms

Abstract

Colorimetric sensing offers instant reporting via visible signals. Versus labor-intensive and instrument-dependent detection methods, colorimetric sensors present advantages including short acquisition time, high throughput screening, low cost, portability, and a user-friendly approach. These advantages have driven substantial growth in colorimetric sensors, particularly in point-of-care (POC) diagnostics. Rapid progress in nanotechnology, materials science, microfluidics technology, biomarker discovery, digital technology, and signal pattern analysis has led to a variety of colorimetric reagents and detection mechanisms, which are fundamental to advance colorimetric sensing applications. This review first summarizes the basic components (e.g., color reagents, recognition interactions, and sampling procedures) in the design of a colorimetric sensing system. It then presents the rationale design and typical examples of POC devices, e.g., lateral flow devices, microfluidic paper-based analytical devices, and wearable sensing devices. Two highlighted colorimetric formats are discussed: combinational and activatable systems based on the sensor-array and lock-and-key mechanisms, respectively. Case discussions in colorimetric assays are organized by the analyte identities. Finally, the review presents challenges and perspectives for the design and development of colorimetric detection schemes as well as applications. The goal of this review is to provide a foundational resource for developing colorimetric systems and underscoring the colorants and mechanisms that facilitate the continuing evolution of POC sensors.

Graphical abstract: Colorimetric sensing for translational applications: from colorants to mechanisms

Article information

Article type
Review Article
Submitted
09 Apr 2024
First published
05 Jun 2024

Chem. Soc. Rev., 2024,53, 7681-7741

Colorimetric sensing for translational applications: from colorants to mechanisms

Z. Jin, W. Yim, M. Retout, E. Housel, W. Zhong, J. Zhou, M. S. Strano and J. V. Jokerst, Chem. Soc. Rev., 2024, 53, 7681 DOI: 10.1039/D4CS00328D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements