Issue 24, 2024

Fundamentals of the recycling of spent lithium-ion batteries

Abstract

This review discusses the critical role of fundamentals of battery recycling in addressing the challenges posed by the increasing number of spent lithium-ion batteries (LIBs) due to the widespread use of electric vehicles and portable electronics, by providing the theoretical basis and technical support for recycling spent LIBs, including battery classification, ultrasonic flaw detection, pretreatment (e.g., discharging, mechanical crushing, and physical separation), electrolyte recovery, direct regeneration, and theoretical calculations and simulations. Physical chemistry principles are essential for achieving effective separation of different components through methods like screening, magnetic separation, and flotation. Electrolyte recovery involves separation and purification of electrolytes through advanced physical and chemical techniques. Direct regeneration technology restores the structure of electrode materials at the microscopic scale, requiring precise control of the physical state and crystal structure of the material. Physical processes such as phase changes, solubility, and diffusion are fundamental to techniques like solid-state sintering, eutectic-salt treatment, and hydrothermal methods. Theoretical calculations and simulations help predict the behaviour of materials during recycling, guiding process optimization. This review provides insights into understanding and improving the recycling process, emphasizing the central role of physical chemistry principles in addressing environmental and energy issues. It is valuable for promoting innovation in spent LIB recycling processes and is expected to stimulate interest among researchers and manufacturers.

Graphical abstract: Fundamentals of the recycling of spent lithium-ion batteries

Article information

Article type
Review Article
Submitted
04 Aug 2024
First published
29 Oct 2024

Chem. Soc. Rev., 2024,53, 11967-12013

Fundamentals of the recycling of spent lithium-ion batteries

P. Li, S. Luo, Y. Lin, J. Xiao, X. Xia, X. Liu, L. Wang and X. He, Chem. Soc. Rev., 2024, 53, 11967 DOI: 10.1039/D4CS00362D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements