Issue 12, 2024

Visible light photocatalytic synthesis of H2O2 on synergistic phosphorus-doped and defect engineered graphite C3N4

Abstract

H2O2 is a green oxidant, which is widely used in chemical production, environmental remediation, sustainable energy conversion and the medical industry. The traditional anthraquinone method for producing H2O2 is facing issues, such as potential safety hazards and environmental pollution. Therefore, green and sustainable production of H2O2 is desirably investigated. Solar-driven photocatalytic synthesis of H2O2 is a promising method, which requires no additional energy input and will not produce new pollution. g-C3N4 is a kind of nonmetallic photocatalyst, which has the advantages of low cost, environmental friendliness and high stability. However, g-C3N4 still faces the problems of a narrow visible light response range, low photo-generated electron/hole separation efficiency and short carrier lifetime. The polymer properties of g-C3N4 are conducive to introducing foreign atoms into the main body of the tri-s-triazine structure. The electronic structure and optical properties of g-C3N4 can be adjusted by doping, which can significantly improve the photocatalytic performance of g-C3N4. In this work, phosphorus doped g-C3N4 (P/g-C3N4) is prepared by a simple chemical vapor deposition method. The doping process also introduced defects in the bulk phase of g-C3N4, which overcomes drawbacks such as weak visible light capturing ability, low charge separation and transfer efficiency, and a slow mass transfer rate. In addition, the optimized conduction band position further enhances the reduction ability of photo-generated electrons, making its photocatalytic performance magnify by one order of magnitude compared to that of pure g-C3N4. Driven by visible light, P/g-C3N4 produces H2O2 through the photocatalytic oxygen reduction reaction (ORR) in 2 h, reaching a high concentration of 1460.22 μM, and it also maintains good catalytic repeatability in three-cycle catalytic experiments. P/g-C3N4 achieves the goal of efficient, stable and green synthesis of H2O2.

Graphical abstract: Visible light photocatalytic synthesis of H2O2 on synergistic phosphorus-doped and defect engineered graphite C3N4

Supplementary files

Article information

Article type
Paper
Submitted
08 Apr 2024
Accepted
03 May 2024
First published
03 May 2024

Catal. Sci. Technol., 2024,14, 3374-3381

Visible light photocatalytic synthesis of H2O2 on synergistic phosphorus-doped and defect engineered graphite C3N4

X. Xu and Z. Zhang, Catal. Sci. Technol., 2024, 14, 3374 DOI: 10.1039/D4CY00455H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements