Issue 22, 2024

Switching of selectivity from benzaldehyde to benzoic acid using MIL-100(V) as a heterogeneous catalyst in aerobic oxidation of benzyl alcohol

Abstract

A vanadium-centered metal organic framework [MIL-100(V)] was synthesized as a heterogeneous catalyst allowing the selectivity to be switched from almost quantitative formation of benzaldehyde (Bz-CHO) to quantitative formation of benzoic acid (Bz-COOH) by changing only the temperature in the aerobic oxidation of benzyl alcohol (Bz-OH). The aerobic oxidation of Bz-OH was performed using molecular oxygen or air in the temperature range of 60–120 °C. A Bz-CHO formation yield of 98.1% was obtained with quantitative Bz-OH conversion at 80 °C. When the oxidation temperature was set to 100 °C, a Bz-COOH formation yield of 100% was achieved with quantitative Bz-OH conversion. The suitability of a serial reaction mechanism including Bz-CHO formation from Bz-OH and Bz-COOH formation from Bz-CHO as the first and second stage reactions, respectively was investigated for the aerobic oxidation process. The apparent first-order rate constants determined for first and second stage reactions demonstrated that the first-stage reaction was faster with respect to the second one. The proposed kinetic model allowed the calculation of apparent activation energies for Bz-CHO formation from Bz-OH and Bz-COOH formation from Bz-CHO as 77.3 and 149.2 kJ mol−1, respectively. The presence of hydroxyl (·OH) and superoxide anion (O2˙) radicals in the aerobic oxidation was demonstrated by radical scavenging runs. A mechanism was proposed based on the crystalline structure of MIL-100(V) and the radical types identified by the scavenging runs. This study opens a new path for tuning of selectivity towards Bz-CHO or Bz-COOH, for the first time, using a transition metal based catalyst synthesized by a one-pot hydrothermal reaction.

Graphical abstract: Switching of selectivity from benzaldehyde to benzoic acid using MIL-100(V) as a heterogeneous catalyst in aerobic oxidation of benzyl alcohol

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2024
Accepted
24 Sep 2024
First published
25 Sep 2024
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2024,14, 6524-6536

Switching of selectivity from benzaldehyde to benzoic acid using MIL-100(V) as a heterogeneous catalyst in aerobic oxidation of benzyl alcohol

D. Hacıefendioğlu and A. Tuncel, Catal. Sci. Technol., 2024, 14, 6524 DOI: 10.1039/D4CY00832D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements