Electrochemically synthesized Ce-doped Cu-mesh catalyst with high activity and stability towards HMF to FDCA conversion†
Abstract
The electrochemical oxidation of 5-hydroxymethylfurfural (HMF) to high value-added downstream products is a sustainable and cost-effective strategy. In this study, a series of copper-based HMF oxidation reaction (HMFOR) catalysts were synthesized through a modified chronopotentiometry method using copper mesh as a starting material. The cerium-doped copper mesh catalyst, denoted as Ec CM-Ce demonstrates exceptional performance in the HMFOR, exhibiting remarkable selectivity (99.2%), yield (96.4%), Faraday efficiency (92.6%), and stability (12 cycles without significant activity decay). X-ray diffraction and surface-enhanced in situ Raman spectroscopy demonstrated the transformation of Cu2O to CuO during the oxidation of HMF to FDCA. Electrochemical impedance spectroscopy and surface-enhanced in situ infrared spectroscopy indicated that cerium enhanced the electron transfer efficiency and adsorption of water as well as organic molecules. This study not only introduces a novel method for synthesizing electro-catalysts but also suggests innovative approaches for the electrochemical HMF oxidation.