Issue 3, 2024

Physics-informed models of domain wall dynamics as a route for autonomous domain wall design via reinforcement learning

Abstract

Understanding the dynamics of domain walls in ferroelectrics is critical both for fundamental reasons of studying interfacial dynamics in disordered media, as well as practical engineering of metastable states with enhanced properties. Piezo response force microscopy (PFM) enables both imaging and writing of ferroelectric domain walls via a biased scanning probe. However, control over positioning of individual domain wall segments to engineer domain wall structures over large areas reproducibly, and particularly, quantification of associated mechanisms remains challenging. Here, we present a reinforcement learning based experimental workflow deployed on an autonomous PFM platform that enables automated data collection of domain walls interacting with pinning sites. The autonomous experiment is used to construct a physics-informed surrogate model of local domain wall response in response to applied electric fields by the PFM tip in prototypical (110) PbTiO3 thin films, and the results are further verified using phase-field simulations. The surrogate enables generation of ‘phase diagrams’ of the domain wall, conditional on initial structure. Subsequently, reinforcement learning is used to optimize tip-modification trajectories for obtaining desired domain wall structures in simulated environments utilizing the surrogate model for the environment dynamics. This workflow shows how automated data collection and autonomous agents can be orchestrated towards realizing domain wall manipulations with precision in scanning probe studies, and how such surrogates can aid in understanding domain wall interactions in ferroelectrics.

Graphical abstract: Physics-informed models of domain wall dynamics as a route for autonomous domain wall design via reinforcement learning

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
07 Jul 2023
Accepted
05 Feb 2024
First published
07 Feb 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2024,3, 456-466

Physics-informed models of domain wall dynamics as a route for autonomous domain wall design via reinforcement learning

B. R. Smith, B. Pant, Y. Liu, Y. Liu, J. Yang, S. Jesse, A. Khojandi, S. V. Kalinin, Y. Cao and R. K. Vasudevan, Digital Discovery, 2024, 3, 456 DOI: 10.1039/D3DD00126A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements