Issue 2, 2024

An interpretable and transferrable vision transformer model for rapid materials spectra classification

Abstract

Rapid analysis of materials characterization spectra is pivotal for preventing the accumulation of unwieldy datasets, thus accelerating subsequent decision-making. However, current methods heavily rely on experience and domain knowledge, which not only proves tedious but also makes it hard to keep up with the pace of data acquisition. In this context, we introduce a transferable Vision Transformer (ViT) model for the identification of materials from their spectra, including XRD and FTIR. First, an optimal ViT model was trained to predict metal organic frameworks (MOFs) from their XRD spectra. It attains prediction accuracies of 70%, 93%, and 94.9% for Top-1, Top-3, and Top-5, respectively, and a shorter training time of 269 seconds (∼30% faster) in comparison to a convolutional neural network model. The dimension reduction and attention weight map underline its adeptness at capturing relevant features in the XRD spectra for determining the prediction outcome. Moreover, the model can be transferred to a new one for prediction of organic molecules from their FTIR spectra, attaining remarkable Top-1, Top-3, and Top-5 prediction accuracies of 84%, 94.1%, and 96.7%, respectively. The introduced ViT-based model would set a new avenue for handling diverse types of spectroscopic data, thus expediting the materials characterization processes.

Graphical abstract: An interpretable and transferrable vision transformer model for rapid materials spectra classification

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Oct 2023
Accepted
28 Dec 2023
First published
29 Dec 2023
This article is Open Access
Creative Commons BY license

Digital Discovery, 2024,3, 369-380

An interpretable and transferrable vision transformer model for rapid materials spectra classification

Z. Chen, Y. Xie, Y. Wu, Y. Lin, S. Tomiya and J. Lin, Digital Discovery, 2024, 3, 369 DOI: 10.1039/D3DD00198A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements