Issue 12, 2024

Discrete and mixed-variable experimental design with surrogate-based approach

Abstract

Experimental design plays an important role in efficiently acquiring informative data for system characterization and deriving robust conclusions under resource limitations. Recent advancements in high-throughput experimentation coupled with machine learning have notably improved experimental procedures. While Bayesian optimization (BO) has undeniably revolutionized the landscape of optimization in experimental design, especially in the chemical domain, it is important to recognize the role of other surrogate-based approaches in conventional chemistry optimization problems. This is particularly relevant for chemical problems involving mixed-variable design space with mixed-variable physical constraints, where conventional BO approaches struggle to obtain feasible samples during the acquisition step while maintaining exploration capability. In this paper, we demonstrate that integrating mixed-integer optimization strategies is one way to address these challenges effectively. Specifically, we propose the utilization of mixed-integer surrogates and acquisition functions–methods that offer inherent compatibility with problems with discrete and mixed-variable design space. This work focuses on piecewise affine surrogate-based optimization (PWAS), a surrogate model capable of handling medium-sized mixed-variable problems (up to around 100 variables after encoding) subject to known linear constraints. We demonstrate the effectiveness of this approach in optimizing experimental planning through three case studies. By benchmarking PWAS against state-of-the-art optimization algorithms, including genetic algorithms and BO variants, we offer insights into the practical applicability of mixed-integer surrogates, with emphasis on problems subject to known discrete/mixed-variable linear constraints.

Graphical abstract: Discrete and mixed-variable experimental design with surrogate-based approach

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2024
Accepted
22 Oct 2024
First published
28 Oct 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2024,3, 2589-2606

Discrete and mixed-variable experimental design with surrogate-based approach

M. Zhu, A. Mroz, L. Gui, K. E. Jelfs, A. Bemporad, E. A. del Río Chanona and Y. S. Lee, Digital Discovery, 2024, 3, 2589 DOI: 10.1039/D4DD00113C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements