Cost-informed Bayesian reaction optimization†
Abstract
Bayesian optimization (BO) is an efficient method for solving complex optimization problems, including those in chemical research, where it is gaining significant popularity. Although effective in guiding experimental design, BO does not account for experimentation costs: testing readily available reagents under different conditions could be more cost and time-effective than synthesizing or buying additional ones. To address this issue, we present cost-informed BO (CIBO), an approach tailored for the rational planning of chemical experimentation that prioritizes the most cost-effective experiments. Reagents are used only when their anticipated improvement in reaction performance sufficiently outweighs their costs. Our algorithm tracks available reagents, including those recently acquired, and dynamically updates their cost during the optimization. Using literature data of Pd-catalyzed reactions, we show that CIBO reduces the cost of reaction optimization by up to 90% compared to standard BO. Our approach is compatible with any type of cost, e.g., of buying equipment or compounds, waiting time, as well as environmental or security concerns. We believe CIBO extends the possibilities of BO in chemistry and envision applications for both traditional and self-driving laboratories for experiment planning.