Syntheses, crystal structures and MMCT properties of diruthenium-based cyanido-bridged Ru V/VI2–NC–RuII complexes†
Abstract
The goal of this study was to investigate how the electron-donating capability around the lower valent metal ion and the electron-accepting capability of the higher valent metal ion influence metal to metal charge transfer (MMCT) properties in mixed-valence complexes. A series of trinuclear ruthenium complexes represented as [Ru2(ap-4-Me)3(CH3COO)NCRuCpMex(dppe)][PF6] (CpMex = polymethylcyclopentadienyl, x = 0, 1, and 5; and dppe = 1, 2-bis(diphenylphosphino)ethane, ap-4-Me = 2-anilino-4-methylpyridine) and their one-electron oxidized products were synthesized and fully characterized. The UV–vis-NIR spectra confirmed that as the electron donor character of the CpMex(dppe)RuCN fragment enhanced or the electron-accepting capability of the higher valent diruthenium cluster increased, the RuII → RuV2 or RuVI2 Ru2 MMCT bands shifted to lower energies, which was supported by TDDFT calculations.