Synthesis and activation of pH-sensitive metal–organic framework Sr(BDC)∞ for oral drug delivery†
Abstract
Metal–organic frameworks (MOFs) are widely used in the biomedical industry. In this study, we developed a new method for obtaining a metal–organic structure of strontium and terephthalic acid, Sr(BDC), and an alternative activation method for removing DMF from the pores. Sr(BDC) MOFs were successfully prepared and characterized by XRD, FTIR, TGA, and SEM. The importance of the activation steps was confirmed by TGA, which showed that the Sr(BDC)(DMF) sample can contain up to a quarter of the solvent (DMF) before activation. In our study, IR spectroscopy confirmed the possibility of removing DMF by ethanol treatment from the Sr-BDC crystals. A comparative analysis of the effect of the activation method on the specific surface and pore size of Sr-BDC and its sorption properties using the model drug doxorubicin showed that due to the undeveloped surface of the Sr-(BDC)(DMF) sample, it is not possible to obtain an adsorption isotherm and determine the pore size distribution, thus showing the importance of the activation step. Cytotoxicity and apoptosis assays were carried out to study the biological activity of MOFs, and we observed relatively low toxicity in the tested concentration range after 48 h, with over 92% cell survival for Sr(BDC)(DMF) and Sr(BDC)(260 °C), with a decrease only in the highest concentration (800 mg L−1). Similar results were observed in our apoptosis assays, as they revealed low apoptotic population generation of 2.52%, 3.23%, and 2.77% for Sr(BDC)(DMF), Sr(BDC) and Sr(BDC)(260 °C), respectively. Overall, the findings indicate that ethanol-activated Sr(BDC) shows potential as a safe and effective material for drug delivery.