Issue 6, 2024

Anti-thermal quenching of luminescence in Y2W3O12:Yb3+/RE3+ (RE = Er/Ho/Tm) and its temperature sensing application

Abstract

Herein, a series of Y2W3O12:10%Yb3+/x%RE3+ (RE = Er/Ho/Tm) phosphors is prepared via a solid-state reaction. The upconversion and downshift luminescence properties of the phosphors were investigated under an excitation of 980 nm. The bright blue light emission from Tm3+ ion and the green and red light emissions from Ho3+(Er3+) ions were observed. The near-infrared light intensity of NIR-I (Tm3+, ∼850 nm), NIR-II (Er3+: ∼1550 nm; Tm3+: ∼1783 nm) and NIR-III (Ho3+: ∼2050 nm) were analyzed. In particular, the dramatic thermal enhancement phenomenon in visible and NIR regions was exhibited by the Y2W3O12:10%Yb3+/x%RE3+ (RE = Er/Ho/Tm) phosphors. Among them, the green light intensity of Er3+ ions increased 26.77 times, from 303 to 573 K. The NIR-II emission band (∼1783 nm) intensity of Tm3+ ions at 533 K increased 168.7 times compared to that at 313 K. The possible thermal enhancement mechanism is illustrated by the negative thermal expansion (NTE) and Frenkel defect of the Y2W3O12 host. Finally, the optical temperature sensing performances of Y2W3O12:10%Yb3+/x%RE3+ (RE = Er/Ho/Tm) samples are investigated according to the luminescence intensity dependence relationship on temperature. The maximum value of SR reached 4.24% K−1 at 353 K for Y2W3O12:10%Yb3+/0.6%Ho3+ phosphor. The results indicate that the Y2W3O12:10%Yb3+/x%RE3+ (RE = Er/Ho/Tm) phosphors possess anti-thermal quenching properties and are suitable for developing optical temperature sensors.

Graphical abstract: Anti-thermal quenching of luminescence in Y2W3O12:Yb3+/RE3+ (RE = Er/Ho/Tm) and its temperature sensing application

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2023
Accepted
20 Dec 2023
First published
29 Dec 2023

Dalton Trans., 2024,53, 2575-2590

Anti-thermal quenching of luminescence in Y2W3O12:Yb3+/RE3+ (RE = Er/Ho/Tm) and its temperature sensing application

Y. Zhang, W. Cai, J. Liu, Z. Zhang, B. Sun and H. Liu, Dalton Trans., 2024, 53, 2575 DOI: 10.1039/D3DT03331G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements