Issue 7, 2024

Boosting the catalytic performance of Al2O3-supported Pd catalysts by introducing CeO2 promoters

Abstract

Maintaining the stability of noble metals is the key to the long-term stability of supported catalysts. In response to the instability of noble metal species at high temperatures, we developed a synergistic strategy of dual oxide supports. By designing and constructing ceria components with small sizes, we have achieved unity in the ability of catalytic materials to supply oxygen and stabilize metal species. In this study, we prepared Al2O3-CeO2-Pd (AlCePd) catalysts containing trace amounts of Ce through the hydrolysis of cerium acetate, which achieved 100% CO conversion at 160 °C. More importantly, the activity remained at its initial 100% in the long-term durability testing, demonstrating the high stability of AlCePd. In contrast, the CO conversion of the CeO2-Pd (CePd) catalyst decreased from 100% to 54% within 3 h. Through comprehensive studies, we found that this excellent catalytic performance stems from the stabilizing effect of an alumina support and the possible reverse oxygen spillover effect of small-sized ceria components, where small-sized ceria components provide active oxygen for independent Pd species, making it possible for the CO adsorbed on Pd to react with this oxygen species.

Graphical abstract: Boosting the catalytic performance of Al2O3-supported Pd catalysts by introducing CeO2 promoters

Supplementary files

Article information

Article type
Paper
Submitted
03 Nov 2023
Accepted
02 Jan 2024
First published
23 Jan 2024

Dalton Trans., 2024,53, 3290-3295

Boosting the catalytic performance of Al2O3-supported Pd catalysts by introducing CeO2 promoters

X. Han, L. Zhang, R. Zhang, K. Wang, X. Wang, B. Li, Z. Tao, S. Song and H. Zhang, Dalton Trans., 2024, 53, 3290 DOI: 10.1039/D3DT03676F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements