Issue 5, 2024

Quasi-2D Bi0.775Ln0.225O1.5 (Ln = La, Pr, Nd, Sm, Eu): reversible iodine intercalation and their evaluation as the anode in the lithium-ion battery system

Abstract

Layered materials with a robust structure and reversible intercalation behavior are highly sought-after in applications involving energy conversion and storage systems, energy converting devices, supercapacitors, batteries, superconductors, photonic materials, and catalysis involving hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), solar cells and sensors. In the current study, quasi-2D rhombohedral Bi0.775Ln0.225O1.5 (Ln = La, Pr, Nd, Sm, and Eu) samples, synthesized by a solution combustion route, have been demonstrated to intercalate iodine reversibly. A solid–vapor reaction was employed to intercalate iodine at moderate temperatures, and deintercalation occurred on heating at higher temperatures. Expansion of the rhombohedral c-axis by ∼10 Å occurred, and the iodine between the interlayers existed as triiodide ions (I3) in an unsymmetrical fashion. The amount of intercalated iodide has been determined from thermogravimetric analysis. Electron microscopic analysis confirmed these systems’ intercalation and subsequent lattice expansion. In the diffuse reflectance spectra, charge transfer from the triiodide ions to the host oxide was noticed, and it caused the absorption edge to fall beyond the visible region for the intercalated samples. XPS analysis of iodine intercalated Bi0.775Pr0.225O1.5 has shown the mixed valence states for Pr and the existence of I3 along with some IO3 species. The quasi-2D structure was stable during the thermal deintercalation process. The evaluation of iodine intercalated Bi0.775Ln0.225O1.5 (Ln = La, Pr, Nd, Sm, and Eu) samples as anode material in the lithium-ion battery system has given quite promising results, exhibiting fast Li+-ion diffusion, low charge transfer resistance, good reversible capacity, capacity retention (after cycling back to 10 mA g−1), and structural stability (after long cycles).

Graphical abstract: Quasi-2D Bi0.775Ln0.225O1.5 (Ln = La, Pr, Nd, Sm, Eu): reversible iodine intercalation and their evaluation as the anode in the lithium-ion battery system

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2023
Accepted
02 Jan 2024
First published
03 Jan 2024

Dalton Trans., 2024,53, 2294-2305

Quasi-2D Bi0.775Ln0.225O1.5 (Ln = La, Pr, Nd, Sm, Eu): reversible iodine intercalation and their evaluation as the anode in the lithium-ion battery system

P. Yadav, S. Rao, O. V. Sreejith, R. Murugan and R. Nagarajan, Dalton Trans., 2024, 53, 2294 DOI: 10.1039/D3DT03834C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements