Silver frameworks based on a tetraphenylethylene–imidazole ligand for electrocatalytic reduction of CO2 to CO†
Abstract
Metal–organic frameworks (MOFs) can be used as electrocatalysts for the CO2 reduction reaction (CO2RR) because of their well-dispersed metal centers. Silver is a common electrocatalyst for reduction of CO2 to CO. In this study, two Ag-MOFs with different structures of [Ag8O2(TIPE)6](NO3)4 (Ag-MOF1) and [Ag(TIPE)0.5CF3SO3] (Ag-MOF2) [TIPE = 1,1,2,2-tetrakis(4-(imidazol-1-yl)phenyl)ethene] were synthesized and used for CO2 electroreduction. The results show that Ag-MOF2 is superior to Ag-MOF1 and exhibits high CO faradaic efficiency (FE) of 92.21% with partial current density of 29.51 mA cm−2 at −0.98 V versus reversible hydrogen electrode (RHE). The FECO is higher than 80% in the potential range of −0.78 to −1.18 V. The difference may be caused by different framework structures leading to different electrochemical active surface areas and charge transfer kinetics. This study provides a new strategy for designing and constructing CO2 electroreduction catalysts and provides potential ways for solving environmental and energy problems caused by excessive CO2 emission.