Unprecedented Mo3S4 cluster-catalyzed radical C–C cross-coupling reactions of aryl alkynes and acrylates†
Abstract
A new method for the generation of benzyl radicals from terminal aromatic alkynes has been developed, which allows the direct cross coupling with acrylate derivatives. Our additive-free protocol employs air-stable diamino Mo3S4 cubane-type cluster catalysts in the presence of hydrogen. A sulfur-centered cluster catalysis mechanism for benzyl radical formation is proposed based on catalytic and stoichiometric experiments. The process starts with the cluster hydrogen activation to form a bis(hydrosulfido) [Mo3(μ3-S)(μ-S)(μ-SH)2Cl3(dmen)3]+ intermediate. The reaction of various aromatic terminal alkynes containing different functionalities with a series of acrylates affords the corresponding Giese-type radical addition products.