Spatially ordered NiOOH-ZnS/CdS heterostructures with an efficient photo-carrier transmission channel for markedly improved H2 production†
Abstract
Spatially-ordered 1D nanocrystal-based semiconductor nanostructures possess distinct merits for photocatalytic reaction, including large surface area, fast carrier separation, and enhanced light scattering and absorption. Nevertheless, establishing a valid photo-carrier transmission channel is still crucial yet challenging for semiconductor heterostructures to realize efficient photocatalysis. In this work, spatially ordered NiOOH-ZnS/CdS heterostructures were constructed by sequential ZnS coating and NiOOH photo-deposition on multi-armed CdS, which consists of {110}-faceted wurtzite nanorods grown epitaxially on {111}-faceted zinc blende core. Intriguingly, the surface photovoltage spectroscopy and PbO2 photo-deposition results suggest that the photogenerated holes of CdS were first transferred to the Zn-vacancy level of ZnS and then to NiOOH, as driven by the built-in electric field between ZnS and CdS and the hole-extracting effect of the NiOOH cocatalyst, leading to the efficient charge separation of NiOOH-ZnS/CdS. With visible-light (λ > 420 nm) irradiation, NiOOH-ZnS/CdS exhibited a distinguished H2-evolution rate of 152.20 mmol g−1 h−1 (apparent quantum efficiency of 40.9% at 420 nm), approximately 18 folds that of 3 wt% Pt-loaded CdS and much higher than that of ZnS/CdS and NiOOH-CdS counterparts as well as the most reported CdS-containing photocatalysts. Moreover, the cycling and long-term H2 generation tests manifested the outstanding photocatalyst stability of NiOOH-ZnS/CdS. The study results presented here may propel the controllable design of highly-active nanomaterials for solar conversion and utilization.