Issue 20, 2024

DLPNO-CCSD(T) and DFT study of the acetate-assisted C–H activation of benzaldimine at [RuCl2(p-cymene)]2: the relevance of ligand exchange processes at ruthenium(ii) complexes in polar protic media

Abstract

To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol−1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C–H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG MUE of ca. 1 kcal mol−1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C–H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.

Graphical abstract: DLPNO-CCSD(T) and DFT study of the acetate-assisted C–H activation of benzaldimine at [RuCl2(p-cymene)]2: the relevance of ligand exchange processes at ruthenium(ii) complexes in polar protic media

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2024
Accepted
19 Apr 2024
First published
25 Apr 2024
This article is Open Access
Creative Commons BY license

Dalton Trans., 2024,53, 8662-8679

DLPNO-CCSD(T) and DFT study of the acetate-assisted C–H activation of benzaldimine at [RuCl2(p-cymene)]2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media

V. Ojea and M. Ruiz, Dalton Trans., 2024, 53, 8662 DOI: 10.1039/D4DT00380B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements