Issue 22, 2024

Structural and vibrational properties of lanthanide Lindqvist polyoxometalate complexes

Abstract

Molecular spin qubits have demonstrated immense potential in quantum information science research due to the addressability of electron spins using microwave frequencies, and the scalability and tunability of molecular systems. Exemplary in this regard is the holmium polyoxometalate, [Na9Ho(W5O18)2]·35H2O (HoW10), which features an accessible atomic clock transition at 9.4 GHz; however, the coherence time of this molecule is limited by spin-phonon coupling driven decoherence processes. To limit these decoherence pathways, materials need to be designed to reduce energy overlap between spin and phonon states, and this necessitates developing a better understanding on how structural modifications impact the vibrational landscape for classes of complexes. Herein we conducted a full investigation into the fundamental structural and vibrational properties of the lanthanide Lindqvist polyoxometalate series, [Na9Ln(W5O18)2xH2O (Ln = La(III)–Lu(III), except Pm(III)) (LnW10), to assess how structural changes effect vibrational characteristics and to elucidate pathways to improve the coherence properties of HoW10. Single crystal X-ray diffraction results revealed four distinct structural polymorphs in complexes 1–14 wherein first coordination spheres were identical, and differences manifested as changes in lattice packing. Interestingly, the subtle changes in packing exhibited by the four polymorphs were found to impact distortions away from ideal D4d symmetry for each of the LnW10 complexes. Raman and far-infrared (FIR) spectra of complexes 1–14 were collected to identify vibrational modes present in low energy regions and peak fitting assignments were made according to literature precedents. Qualitative and Partial least squares (PLS) analysis show correlations between complex structural parameters with the low energy Raman and FIR vibrational modes of interest. Overall, this investigation shows that the second coordination sphere plays an integral role in modulation of the structural and vibrational characteristics of LnW10 complexes, which makes it a viable route for tuning spin and vibrational manifolds of species within this series.

Graphical abstract: Structural and vibrational properties of lanthanide Lindqvist polyoxometalate complexes

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2024
Accepted
04 May 2024
First published
15 May 2024
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2024,53, 9526-9539

Structural and vibrational properties of lanthanide Lindqvist polyoxometalate complexes

P. J. Subintoro and K. P. Carter, Dalton Trans., 2024, 53, 9526 DOI: 10.1039/D4DT00786G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements