Issue 21, 2024

Theoretical investigations of 2-vinylpyridine stereoselective polymerization catalyzed by cationic yttrium complexes with different ancillary ligands

Abstract

The polymerization mechanism of 2-vinylpyridine catalyzed by cationic yttrium complexes with diverse ancillary ligands, specifically [L1Y(CH2SiMe3)(THF)]+ [L1 = (2,6-Et2C6H3)NC(Me)CHC(Me)N(2,6-Et2C6H3)] (Y-1), [L2Y(CH2SiMe3)(THF)]+ [L2 = (2,6-Cl2C6H3)NC(Me)CHC(Me)N(2,6-Cl2C6H3)] (Y-2), and [L3Y(CH2SiMe3)(THF)]+ [L3 = (2,6-C6H5)NC(Me)CHC(Me)N(2,6-iPr2C6H3)] (Y-3), was studied using density functional theory (DFT) calculations. Having achieved an agreement between theory and experiment, it is found that isotactic selectivity induced by Y-1 or Y-2 results from a combination of smaller deformation of the catalyst and stronger electronic effects. Conversely, the Y-3 complex exhibits comparable energy barriers for proceeding via either isotactic or syndiotactic pathways, aligning with the production of atactic polymers as seen experimentally. To examine the steric effects on the kinetic and thermodynamic properties, a computational model of an analogue complex [L4Y(CH2SiMe3)(THF)]+ [L4 = (2,6-Cl2C6H3)NC(Me)CHC(Me)N(iPr2C6H3)] (Y-4), featuring increased steric hindrance, was analyzed. Distortion–interaction and topographic steric map analyses further affirmed that steric hindrance significantly influences stereoselectivity. A direct relationship was identified between the energy barriers of isotactic insertion transition states and the bulkiness of ancillary ligands; greater distortion energy of the catalyst correlates with higher barriers for isotactic polymerization. These findings enhance the mechanistic comprehension of 2-vinylpyridine polymerization and are expected to contribute valuable insights for the improvement of catalytic polymerization systems of 2-vinylpyridine.

Graphical abstract: Theoretical investigations of 2-vinylpyridine stereoselective polymerization catalyzed by cationic yttrium complexes with different ancillary ligands

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2024
Accepted
02 May 2024
First published
11 May 2024

Dalton Trans., 2024,53, 9198-9206

Theoretical investigations of 2-vinylpyridine stereoselective polymerization catalyzed by cationic yttrium complexes with different ancillary ligands

X. Wen, Z. Zhang, K. Ren, W. Zhang, G. Zhou and Y. Luo, Dalton Trans., 2024, 53, 9198 DOI: 10.1039/D4DT00838C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements