Ugi's amine based coordination polymers as synergistic catalysts for the electrocatalytic reduction of carbon dioxide†
Abstract
The escalating concentration of carbon dioxide in the atmosphere is a pressing environmental concern, necessitating the development of efficient technologies for CO2 reduction and utilization. In this context, metal–organic frameworks (MOFs) emerge as promising catalysts due to their tunable structures and unique chemical properties. This study focuses on the synthesis, characterization, and evaluation of amino-functionalized MOFs with cobalt and nickel nodes for the electrochemical reduction of CO2. Electrochemical investigations reveal that a cobalt-based MOF primarily facilitates the production of methane, demonstrating high selectivity and efficiency under controlled conditions. In contrast, a nickel-based MOF exhibits a broader array of reduction products, including methane, CO, and ethanol, with a significant conversion efficiency. These differences underscore the impact of the central metal node on the catalytic activity and product distribution. This comprehensive study not only advances our understanding of MOF-based catalysts for CO2 reduction but also underscores the significance of molecular engineering in enhancing the selectivity and efficiency of these processes. By demonstrating the potential of amino-functionalized MOFs with specific metal nodes, we contribute to the development of sustainable solutions for carbon capture and utilization, aligning with global efforts to mitigate climate changes and foster a green chemical industry.