Issue 24, 2024

Elevating the energetic capabilities of metal coordination compounds by incorporating nitrate anions

Abstract

In the realm of energetic materials research, there has been notable interest in energetic coordination compounds (ECCs) owing to their remarkable thermal stability and resistance to mechanical stimuli. This study successfully demonstrated the synthesis of an azole-based C–C bonded ECC1 under ambient conditions. A comprehensive characterization study, employing techniques such as IR, TGA-DSC, NMR and single-crystal X-ray diffraction analysis, was conducted. The bulk compound was investigated by PXRD analysis. In-depth exploration of its physicochemical and energetic performance revealed good detonation properties such as a detonation velocity (VOD) of 8553 m s−1 and a detonation pressure (DP) of 36.2 GPa, which surpass those of heat resistant explosives HNS and TATB. Due to its remarkable high melting and onset decomposition temperature (278/379 °C), it also outperforms the benchmark explosive HMX (279 °C) and the heat-resistant explosive HNS (318 °C) and shows a high impact sensitivity (IS) of 20 J and friction sensitivity (FS) of 360 N. The study also employed Hirshfeld surface and 2D fingerprint analysis to elucidate the close contact of atoms within the molecules. The combination of high detonation properties, thermal stability, and low sensitivity makes the synthesized ECC1 intriguing for further investigations and suggests its potential applications as a safe and high-energy-dense material.

Graphical abstract: Elevating the energetic capabilities of metal coordination compounds by incorporating nitrate anions

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2024
Accepted
23 May 2024
First published
23 May 2024

Dalton Trans., 2024,53, 10093-10098

Elevating the energetic capabilities of metal coordination compounds by incorporating nitrate anions

A. K. Yadav, R. Rajak and S. Dharavath, Dalton Trans., 2024, 53, 10093 DOI: 10.1039/D4DT01467G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements