Synthesis, structure and redox properties of single-atom bridged diuranium complexes supported by aryloxides†
Abstract
Single-atom (group 15 and group 16 anions) bridged dimetallic complexes of low oxidation state uranium provide a convenient route to implement multielectron transfer and promote magnetic communication in uranium chemistry, but remain extremely rare. Here we report the synthesis, redox and magnetic properties of N3−, O2−, and S2− bridged diuranium complexes supported by bulky aryloxide ligands. The U(IV)/U(IV) nitride [Cs(THF)8][(U(OAr)3)2(μ-N)], 1 could be prepared and characterized but could not be reduced. Reduction of the neutral U(IV)/U(IV) complexes [(U(OAr)3)2(μ-X)] A (X = O) and B (X = S) led to the isolation and characterization of the U(IV)/U(III) and U(III)/U(III) analogues. Complexes [(K(THF)4)2(U(OAr)2)2(μ-S)2], 5 and [K(2.2.2-cryptand)]2[(U(OAr)3)2(μ-S)], 6 are the first examples of U(III) sulphide bridged complexes. Computational studies and redox properties allow the reactivity of the dimetallic complexes to be related to their electronic structure.