A highly pyrrolic-N doped carbon modified SiOx anode for superior lithium storage†
Abstract
The poor interfacial stability and undesirable cycling performance caused by their dramatic volume change hinder the large-scale commercial application of SiOx materials for high-energy-density lithium-ion batteries. Herein, a simple two-step carbonization process is employed to prepare highly pyrrolic-nitrogen-doped carbon modified SiOx anode materials (SiOx@NC). The designed SiOx@NC materials exhibit high electron conductivity and favorable electrochemical kinetics. As expected, the SiOx@NC electrode delivers a high specific capacity of 1003.46 mA h g−1 after 200 cycles at 500 mA g−1. The NCM622||SiOx@NC full cell also demonstrates excellent cycling stability and rate performance.