Polyoxometalate-supported transition metal complexes for the oxidative cross-coupling of amines and alcohols†
Abstract
Three new hybrid polyoxometalates (POMs) based on transition metals, namely, copper metal with γ-[Mo8O26]4− polyoxometalates [Cu(DMF)4(Mo8O26)·2C3H8NO]·1.8 DMF (1), cobalt metal with hexamolybdate [Co(DMSO)6][Mo6O19] (2), and nickel metal with hexamolybdate [Ni(DMSO)6][Mo6O19] (3), were developed. These materials were characterised by applying both analytical and spectroscopic techniques (IR, TGA, and CHNO elemental analysis), and structural elucidation was performed using single-crystal X-ray diffraction studies. Among these hybrid POMs, octamolybdate with copper was used for the catalytic production of benzimidazoles. The incorporation of [Cu(DMF)4] between two octamolybdates results in the transformation of POMs into a useful catalyst, which effectively catalyses the oxidative cross-coupling of anilines, benzyl alcohol, and sodium azide to produce benzimidazole. This catalytic reaction occurs in the presence of tert-butyl hydroperoxide (TBHP) at a moderate temperature. Benzimidazole and its derivatives are highly preferred owing to their wide-ranging biological activities and clinical applications. These compounds are exceptionally effective in terms of their selectivity ratio and inhibitory activity. The catalytic reaction presented herein is a one-pot procedure that includes a series of reactions, such as C–H functionalization, condensation, ortho selective amination, and cyclization.