Issue 12, 2024

URMELL – part II: semi-explicit isoprene and aromatics gasSOA modelling

Abstract

Oxidation of emitted anthropogenic and biogenic volatile organic compounds (VOCs) and subsequent chemical reactions reduce the volatility of the products formed leading to secondary organic aerosol (SOA) formation. Despite the huge diversity of individual SOA compounds, SOA modelling is often simplified and estimated at the initial oxidation step neglecting chemical and physical process influencing SOA formation e.g. advection, deposition, chemical degradation and aging processes. To overcome this shortcoming, the chemical gas-phase mechanism URMELL was developed. URMELL treats more than 40 distinct oxidised gas-phase SOA (gasSOA) precursors with individual molecular characteristics and physico-chemical partitioning properties enabling a much more explicit gasSOA treatment for products of aromatics and isoprene oxidation. In this study, CTM simulations using COSMO-MUSCAT were performed with URMELL and compared with a simplified gasSOA scheme applying the widely used gas-phase mechanism RACM. The comparison indicates a delayed and thereby locally shifted gasSOA formation when applying URMELL. This effect is caused by the formation of multigenerational and multifunctional products along the transport trajectory whereby accounting for changes in the oxidant regime and leading to a multitude of gasSOA substances with URMELL. For isoprene and aromatics, URMELL simulates higher contributions of products with lower volatilities whereby aromatics generate even non-volatile products which can partition in new particle formation. The non-volatile aromatic products increase the average aromatic surface gasSOA concentration (30% on 20th of May 2014) and show unexpectedly high concentrations in remote spruce forest areas, away from the emission sources, highlighting the potential of the detailed schemes and its need for application in CTMs.

Graphical abstract: URMELL – part II: semi-explicit isoprene and aromatics gasSOA modelling

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2024
Accepted
21 Oct 2024
First published
01 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2024,4, 1413-1433

URMELL – part II: semi-explicit isoprene and aromatics gasSOA modelling

M. L. Luttkus, E. H. Hoffmann, A. Tilgner, J. Wackermann, H. Herrmann and R. Wolke, Environ. Sci.: Atmos., 2024, 4, 1413 DOI: 10.1039/D4EA00075G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements