Issue 7, 2024

Water-based layer-by-layer processing enables 19% efficient binary organic solar cells with minimized thickness sensitivity

Abstract

Water processing is an ideal strategy for the eco-friendly fabrication of organic solar cells (OSCs), exhibiting a strong market-driven need. Herein, we developed a sequential layer-by-layer (LBL) processing for OSCs using a water-based nanoparticle (NP) ink containing a donor to construct a mesostructured NP layer for infiltration with an acceptor. The NP synthesis and deposition process induced a mesostructured NP (mn)-layer with high molecular packing. The subsequent thermal treatment coalesced the mn-layer and resulted in an optimized vertical phase separation. Due to the efficient carrier transport, binary PM6:BTP-eC9 solar cells fabricated by the water-borne mn-LBL technique achieved an efficiency exceeding 19.0% with long-term stability and accessible upscaling property, which were superior to their counterparts obtained from halogenated solvent processing. Additionally, after fine-tuning the vertical morphology through the mn-LBL strategy, the efficiencies of the thickened device (18.2% for 250 nm and 17.2% for 400 nm) surpassed all the reported binary OSCs with high thicknesses. Furthermore, the tunable mesoporosity allowed solvent- and material-independent processing to be achieved regardless of the acceptor solution's infiltrability into the donor film. This elegant approach showcases the potential of molecularly designing “green” solvent-compatible acceptors in conjunction with the mn-LBL strategy to enable the effective lab-to-fab translation of OSCs.

Graphical abstract: Water-based layer-by-layer processing enables 19% efficient binary organic solar cells with minimized thickness sensitivity

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2024
Accepted
01 Feb 2024
First published
01 Feb 2024

Energy Environ. Sci., 2024,17, 2441-2452

Water-based layer-by-layer processing enables 19% efficient binary organic solar cells with minimized thickness sensitivity

C. Xie, X. Zeng, C. Li, X. Sun, S. Liang, H. Huang, B. Deng, X. Wen, G. Zhang, P. You, C. Yang, Y. Han, S. Li, G. Lu, H. Hu, N. Li and Y. Chen, Energy Environ. Sci., 2024, 17, 2441 DOI: 10.1039/D4EE00068D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements