Issue 11, 2024

Shamrock-shaped non-fullerene acceptors enable high-efficiency and high-voltage organic photovoltaics

Abstract

Minimizing energy loss to increase open-circuit voltage (VOC) is an essential topic to further improve the power conversion efficiency (PCE) in organic photovoltaics (OPVs). Though various molecular strategies have been developed, simultaneously achieving a VOC beyond 1.0 V and maintaining a high PCE above 15% is a huge challenge. Herein, with A–DA′D–A type banana-shaped nonfullerene acceptor (NFA) Y6 as a benchmark, we creatively design acenaphtho[1,2-b]quinoxaline imide (AQI) as a large A′ unit and synthesize two shamrock-shaped NFAs AQI2 and AQI4, which contain different numbers of fluorine atoms on terminal groups. NFAs containing the AQI units could realize enhanced luminescence, decreased Stoke's shift, and minimized energy loss in OPVs. The conjugation extension in the longitudinal direction affords enlarged dipole moments, resulting in efficient hole transfer and long polaron lifetime. Consequently, the D18:AQI2-based devices obtained a PCE of 16.48% with an impressive VOC of 1.00 V, and the D18:AQI4-based devices achieved a higher PCE of 18.02% with a VOC of 0.95 V. A high PCE of 16.48% with a VOC of 1.0 V has been realized for the first time. Our work introduces an effective molecular design strategy and demonstrates that shamrock-shaped NFAs can be a class of promising materials for high-performance OPVs with high voltage.

Graphical abstract: Shamrock-shaped non-fullerene acceptors enable high-efficiency and high-voltage organic photovoltaics

Supplementary files

Article information

Article type
Paper
Submitted
02 Feb 2024
Accepted
03 May 2024
First published
06 May 2024

Energy Environ. Sci., 2024,17, 3868-3877

Shamrock-shaped non-fullerene acceptors enable high-efficiency and high-voltage organic photovoltaics

Z. Wang, M. Ji, A. Tang, M. Du, C. Mu, Y. Liu, E. Wang and E. Zhou, Energy Environ. Sci., 2024, 17, 3868 DOI: 10.1039/D4EE00540F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements