Issue 23, 2024

The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries

Abstract

The electrochemical performance of all-solid-state Li metal batteries (ASSLMBs) can be improved by resolving the challenges triggered by the uncontrolled growth of Li dendrites throughout the solid electrolytes (SEs). Herein, a well-defined composite of micro-Li6PS5Cl (LPSC) and nano-Li1.3Al0.3Ti1.7(PO4)3 (LATP) is designed as a LPSC–LATP interlayer sandwiched between LPSC electrolytes for ASSLMBs. This fabrication exhibits electron-blocking functionalities, which reduce the probability of reaction with Li+ ions for the formation of anode-initiated and grain boundary (GB)-initiated dendrites. More importantly, it also creates localized eliminated micro-environments of Li dendrites through the high transient reactivity between them, and the remaining cracks can be dynamically and effectively filled by decomposition products, thereby clearly suppressing Li dendrite nucleation, propagation and penetration as well as simultaneously contributing to the enhancement of battery performance and stability. With this approach, a fine-tuned LPSC–LATP (8S–2O) interlayer enables symmetrical Li/LPSC/8S–2O/LPSC/Li cells to achieve an ultra-high critical current density (CCD) of over 5 mA cm−2 at room temperature, and ultra-long-term cycling at a current density of 10 mA cm−2 for over 1600 h. Additionally, ASSLMBs employing commercial LiCoO2 cathodes can deliver exceptional durability, with an extremely high 85.6% retention of initial discharge capacity and coulombic efficiency (CE) of >99.6% after 1200 cycles at 1C (1.28 mA cm−2). These experimental batteries demonstrate the application potential of this configuration of SEs for the commercialization of ASSLMBs.

Graphical abstract: The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Jul 2024
Accepted
21 Oct 2024
First published
23 Oct 2024

Energy Environ. Sci., 2024,17, 9288-9302

The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries

Y. Chen, X. Gao, Z. Zhen, X. Chen, L. Huang, D. Zhou, T. Hu, B. Ren, R. Xu, J. Chen, X. Chen, L. Cui and G. Wang, Energy Environ. Sci., 2024, 17, 9288 DOI: 10.1039/D4EE03289F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements