Influence of tritium exposure route on vegetation types at the Savannah River Site†
Abstract
Plant, soil, water, and other media from various locations at the Savannah River Site were measured for total tritium (T) content and T speciation to characterize T in these areas, as well as investigate its uptake behavior and the transport of T species in these media. This characterization included the isolation and measurement of T in tritiated water (HTO), and (when possible) exchangeable organic bound T (E-OBT) and non-exchangeable organic bound T (NE-OBT). Two areas of interest were investigated: (1) a holding pond with T-contaminated water and (2) open basins or streams with low to background levels of T. Water in the holding pond is used to irrigate forest plots in the local area as a T remediation approach. This study compares the analytical data for water, soil/sediment, plants, and lichens from these locations. The results indicate that the behavior of T in plants from these areas can be a function of one or more of the following: seasonal precipitation, the plant's primary route of access to the T-contamination (such as water uptake through the root vs. shoot), plant physical location (relative to T-contaminated water sources), plant rooting depth, pond water level, and plant height above the ground. Total T concentrations were lowest in the un-irrigated forest plants, followed by irrigated forest plants, shallow rooting plants near the pond, deep rooting plants further from the pond, and then water-saturated plants. The OBT:HTO and NE-OBT:E-OBT ratios were always greater for plants from irrigated forest plots compared to those from the holding pond.