A novel electrochemical sensor for simultaneous determination of 2,4-dichlorophenol and 3-chlorophenol†
Abstract
Electrochemical sensors have garnered considerable interest from researchers due to their ability to quickly and accurately detect chlorophenols, which are widespread environmental pollutants with significant health risks. This study presents a novel hydrophilic carbon cloth electrode modified with Ce/Ni/Cu layered double hydroxide (CeNiCu-LDH@CC) for detecting endocrine disruptors 2,4-dichlorophenol (2,4-DCP) and 3-chlorophenol (3-CP). Using a Ce/Ni metal–organic framework (CeNi-MOF) as a precursor, the material is doped with Cu(II) and then alkali-etched into LDH. This process enhances the adsorption sites and surface area of the material, resulting in an electrochemically active surface area (ECSA) of 9.68 cm2 for CeNiCu-LDH@CC. The electrochemical tests reveal that Cu(II) doping improves the conductivity of the sensor, enhancing its performance for chlorophenol detection. The sensor detects 2,4-DCP and 3-CP simultaneously with a linear range of 1 to 100 μM and detection limits of 0.197 μM and 0.286 μM, respectively. Moreover, the CeNiCu-LDH@CC sensor demonstrates high recovery rates in real sample tests, indicating its practical application potential. In summary, the CeNiCu-LDH@CC sensor developed in this study shows exceptional sensing capabilities, stability, and selectivity for 2,4-DCP and 3-CP, making it suitable for simultaneous detection of these compounds.
- This article is part of the themed collection: Nanomaterial applications in water