Issue 11, 2024

Carbon quantum dot (CQD)-dithizone-based thin-film chemical sensors for the specific detection of lead ions in water resources

Abstract

Lead (Pb2+) is one of the toxic pollutants that poses hazardous and severe risks to human health and the environment globally. Lead toxicity issues can be addressed primarily by the detection of Pb. Thus, the requirement for accurate sensors for lead detection in environmental samples is tremendously increasing across the globe. Fluorescence-based detection of lead in water samples can serve as a stepping stone towards achieving goals such as point-of-care, portable, and on-site detection. In the present study, a selective fluorometric chemical sensor developed from dithizone and carbon quantum dots (CQDs) embedded in chitosan polymer thin films was evaluated for Pb2+ detection in various natural water resources. The fluorescent chemical sensors were characterized using FTIR spectroscopy, XPS, XRD, TEM, CLSM, UV spectroscopy, and fluorescence spectroscopy. Pb2+ ions were detected employing a fiber optic spectrophotometer (FOS) paired with a reflectance probe. Two river water samples and household tap water samples were evaluated for the presence of Pb2+ ions, and spiking studies were carried out to measure the accuracy of detection. The sensing and analytical results indicated that lead detection with a limit of detection of 18.3 nM was possible in the 0–100 μM range of concentration with a response time of 1 minute. The spiking of Pb2+ concentration in the various water resources led to an accurate estimation with a maximum error of 1.4%, indicating an interference-free detection of Pb2+. The estimation of Pb2+ based on Micro-plasma Atomic Emission Spectroscopy was used as a reference method. The results indicate that the developed fluorescent chemical sensor based on dithizone-CQD-impregnated chitosan thin films coupled with a fiber optic spectrometer device shows tremendous potential for point-of-care and real-time monitoring of Pb2+ ions in real water samples.

Graphical abstract: Carbon quantum dot (CQD)-dithizone-based thin-film chemical sensors for the specific detection of lead ions in water resources

Supplementary files

Article information

Article type
Paper
Submitted
29 May 2024
Accepted
01 Sep 2024
First published
02 Sep 2024

Environ. Sci.: Water Res. Technol., 2024,10, 2858-2868

Carbon quantum dot (CQD)-dithizone-based thin-film chemical sensors for the specific detection of lead ions in water resources

T. Vyas, H. Kumar, S. Choudhary and A. Joshi, Environ. Sci.: Water Res. Technol., 2024, 10, 2858 DOI: 10.1039/D4EW00452C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements