Issue 11, 2024

Synergistic effect of the heterojunction g-C3N4/Bi2MoO6/clinoptilolite to enhance the photocatalytic degradation of antibiotics in water in the presence of persulfate

Abstract

A novel and highly efficient photocatalyst, g-C3N4/Bi2MoO6/clinoptilolite nanocomposite (CNBC), was synthesized by a hydrothermal method and acted as a Z-scheme heterojunction for efficient activation of peroxydisulfate (PDS) to degrade oxytetracycline (OTC) under visible light (vis) irradiation. The morphology and structure of the photocatalyst were determined by XRD, FT-IR, FE-SEM, EDX, BET, TGA, UV-vis DRS, PL, and XPS. The results showed that CNBC-30 had the best photocatalytic performance with an OTC removal efficiency of more than 87% within 120 min under the conditions of [OTC] = 20 mg L−1, [catalyst] = 500 mg L−1, [Na2S2O8] = 1.26 mM, and pH = 4 at room temperature, which was much better than those of pure g-C3N4, Bi2MoO6, and CNB composites. This superiority is due to the excellent adsorption ability of clinoptilolite that effectively forms the g-C3N4/Bi2MoO6 heterojunctions, thus improving the ability to separate charge carriers while decreasing the recombination rate of electron–hole pairs. Furthermore, the effect of catalyst dosage, oxidant concentration, initial pollutant concentration, solution pH, and coexisting anions on the OTC degradation was comprehensively studied. The results showed that the CNBC-30/PDS system had high reusability and adaptability at different pH levels (3.0–11.0). Quenching tests showed that 1O2, O2˙, and h+ played the main roles in OTC degradation. In addition, OTC intermediates were identified and degradation pathways were proposed based on the results of MS analysis. DFT calculations successfully predicted the positions on the OTC molecule with high Fukui numbers that are suitable for attack by oxidants. CNBC-30 was stable for OTC degradation after four cycles with a degradation efficiency of above 78%, demonstrating its durability and potential for practical applications. This study provides insight into PDS activation in the visible light region by a clinoptilolite-based Z-scheme heterojunction for organic pollutant degradation.

Graphical abstract: Synergistic effect of the heterojunction g-C3N4/Bi2MoO6/clinoptilolite to enhance the photocatalytic degradation of antibiotics in water in the presence of persulfate

Supplementary files

Article information

Article type
Paper
Submitted
28 Jun 2024
Accepted
28 Aug 2024
First published
31 Aug 2024

Environ. Sci.: Water Res. Technol., 2024,10, 2665-2687

Synergistic effect of the heterojunction g-C3N4/Bi2MoO6/clinoptilolite to enhance the photocatalytic degradation of antibiotics in water in the presence of persulfate

P. T. Le, T. P. Nguyen, T. H. Do, H. N. Nguyen, T. M. T. Dinh, T. T. Phan, T. Tsubota and T. D. Nguyen, Environ. Sci.: Water Res. Technol., 2024, 10, 2665 DOI: 10.1039/D4EW00549J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements