Volume 2, 2024

Probing the active sites of oxide encapsulated electrocatalysts with controllable oxygen evolution selectivity

Abstract

Electrocatalysts encapsulated by nanoscopic overlayers can control the rate of redox reactions at the outer surface of the overlayer or at the buried interface between the overlayer and the active catalyst, leading to complex behavior in the presence of two competing electrochemical reactions. This study investigated oxide encapsulated electrocatalysts (OECs) comprised of iridium (Ir) thin films coated with an ultrathin (2–10 nm thick) silicon oxide (SiOx) or titanium oxide (TiOx) overlayer. The performance of SiOx|Ir and TiOx|Ir thin film electrodes towards the oxygen evolution reaction (OER) and Fe(II)/Fe(III) redox reactions were evaluated. An improvement in selectivity towards the OER was observed for all OECs. Overlayer properties, namely ionic and electronic conductivity, were assessed using a combination of electroanalytical methods and molecular dynamics simulations. SiOx and TiOx overlayers were found to be permeable to H2O and O2 such that the OER can occur at the MOx|Ir (M = Ti, Si) buried interface, which was further supported with molecular dynamics simulations of model SiO2 coatings. In contrast, Fe(II)/Fe(III) redox reactions occur to the same degree with TiOx overlayers having thicknesses less than 4 nm as bare electrocatalyst, while SiOx overlayers inhibit redox reactions at all thicknesses. This observation is attributed to differences in electronic transport between the buried interface and outer overlayer surface, as measured with through-plane conductivity measurements of wetted overlayer materials. These findings reveal the influence of oxide overlayer properties on the activity and selectivity of OECs and suggest opportunities to tune these properties for a wide range of electrochemical reactions.

Graphical abstract: Probing the active sites of oxide encapsulated electrocatalysts with controllable oxygen evolution selectivity

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 Apr 2024
Accepted
15 Apr 2024
First published
17 Apr 2024
This article is Open Access
Creative Commons BY-NC license

EES. Catal., 2024,2, 953-967

Probing the active sites of oxide encapsulated electrocatalysts with controllable oxygen evolution selectivity

W. D. H. Stinson, R. S. Stinson, J. Jin, Z. Chen, M. Xu, F. Aydin, Y. Wang, M. F. Calegari Andrade, X. Pan, T. A. Pham, K. E. Hurst, T. Ogitsu, S. Ardo and D. V. Esposito, EES. Catal., 2024, 2, 953 DOI: 10.1039/D4EY00074A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements