Issue 2, 2024

Food quality assessment using chemoresistive gas sensors: achievements and future perspectives

Abstract

Real-time monitoring of food freshness facilitates the supply of safe and high-quality food products to customers. Various gases, including C2H4, NH3, C3H9N, and H2S, can be generated during the spoilage or ripening process of food, providing insights into the state of food freshness. Chemoresistive gas sensors represent one of the reliable pathways to assess food quality due to their high sensitivity, fast response speed, and easy integration. In this paper, we review recent progress in chemoresistive gas sensors for applications in food quality monitoring. Diverse materials, such as metal oxides, carbon-based materials, transition metal dichalcogenides, and other emerging materials, have been proposed with discussions on their sensing mechanisms. This review primarily focuses on the key strategies to enhance the sensitivity and selectivity of specific food quality marker gases using the chemical properties of materials. Additionally, we address the remaining challenges hindering the practical application of chemoresistive gas sensors, such as water poisoning, power consumption, and sensor reliability, while proposing potential solutions. The chemoresistive sensor platform, encompassing functional sensing materials and data recognition systems, can pave the way for real-time food quality monitoring technology in the future.

Graphical abstract: Food quality assessment using chemoresistive gas sensors: achievements and future perspectives

Article information

Article type
Review Article
Submitted
20 Oct 2023
Accepted
13 Dec 2023
First published
03 Jan 2024
This article is Open Access
Creative Commons BY-NC license

Sustainable Food Technol., 2024,2, 266-280

Food quality assessment using chemoresistive gas sensors: achievements and future perspectives

S. J. Park, S. M. Lee, M. Oh, Y. S. Huh and H. W. Jang, Sustainable Food Technol., 2024, 2, 266 DOI: 10.1039/D3FB00196B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements