Silicon-enriched meat positively improves plasma lipidaemia and lipoproteinaemia, LDLr, and insulin capability and the signalling pathway induced by an atherogenic diet in late-stage type 2 diabetes mellitus rats†
Abstract
The impact of silicon as a functional ingredient in restructured meat (RM) on lipoprotein composition, metabolism, and oxidation on type 2 diabetes mellitus (T2DM) markers has never been studied. This study aims to evaluate the effect of silicon-enriched-meat consumption on lipidaemia, lipoprotein profile and metabolism, plasma arylesterase, and TBARS and their relationships with glycaemia, insulinaemia, and insulin-signaling markers in late-stage-T2DM rats fed a high-saturated-fat-high-cholesterol (HSFHC) diet. Saturated-fat diets with or without added cholesterol were formulated by mixing a 70% purified diet with 30% freeze-dried RM with or without added silicon. Three groups of seven Wistar rats each were tested. The ED group received the control RM in the framework of a high-saturated-fat diet as early-stage T2DM control. The other two groups received streptozotocin-nicotinamide administration together with the HSFHC diet containing the control RM (LD) or silicon-enriched RM (LD-Si). Scores were created to define the diabetic trend and dyslipidaemia. The ED rats showed hyperglycaemia, hyperinsulinaemia, hypertriglyceridaemia, and triglyceride-rich-VLDLs, suggesting they were in early-stage T2DM. LD rats presented hyperglycaemia, hypoinsulinaemia, and reduced HOMA-beta and insulin signaling markers typical of late-stage T2DM along with hypercholesterolaemia and high amounts of beta-VLDL, IDL, and LDL particles and low arylesterase activity. All these markers were significantly (p < 0.05) improved in LD-Si rats. The diabetic trend and diabetes dyslipidaemia scores showed a high and significant correlation (r = 0.595, p < 0.01). Silicon-enriched-meat consumption counterbalances the negative effects of HSFHC diets, functioning as an active hypolipemic, antioxidant, and antidiabetic dietary ingredient in a T2DM rat model, delaying the onset of late-stage diabetes.