Issue 7, 2024

Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice

Abstract

Agarose-derived agaro-oligosaccharides (AgaroS) have been extensively studied in terms of structures and bioactivities; they reportedly possess antioxidant and anti-inflammatory activities that maintain intestinal homeostasis and host health. However, the protective effects of AgaroS on deoxynivalenol (DON)-induced intestinal dysfunction remain unclear. We investigated the effects of AgaroS on DON-induced intestinal dysfunction in mice and explored the underlying protective mechanisms. In total, 32 mice were randomly allocated to four treatments (n = 8 each) for 28 days. From day 1 to day 21, the control (CON) and DON groups received oral phosphate-buffered saline (200 μL per day); the AgaroS and AgaroS + DON groups received 200 mg AgaroS per kg body weight once daily by orogastric gavage. Experimental intestinal injury was induced by adding DON (4.8 mg per kg body weight) via gavage from day 21 to day 28. Phosphate-buffered saline was administered once daily by gavage in the CON and AgaroS groups. Herein, AgaroS supplementation led to a higher final body weight and smaller body weight loss and a lower concentration of plasma inflammatory cytokines, compared with the DON group. The DON group showed a significantly reduced ileal villus height and villus height/crypt depth, compared with the CON and AgaroS + DON groups. However, AgaroS supplementation improved DON-induced intestinal injury in mice. Compared with the DON group, ileal and colonic protein expression levels of claudin, occludin, Ki67, and mucin2 were significantly higher in the AgaroS supplementation group. Colonic levels of the anti-inflammatory cytokine IL-1β tended to be higher in the DON group than in the AgaroS + DON group. AgaroS altered the gut microbiota composition, accompanied by increased production of short-chain fatty acids in mice. In conclusion, our findings highlight a promising anti-mycotoxin approach whereby AgaroS alleviate DON-induced intestinal inflammation by modulating intestinal barrier functional integrity and gut microbiota in mice.

Graphical abstract: Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice

Article information

Article type
Paper
Submitted
07 Nov 2023
Accepted
18 Jan 2024
First published
27 Jan 2024

Food Funct., 2024,15, 3380-3394

Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice

Q. Wang, Y. Wang, Y. Wang, Q. Zhang, J. Mi, Q. Ma, T. Li and S. Huang, Food Funct., 2024, 15, 3380 DOI: 10.1039/D3FO04898E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements