Treatment with walnut peptide ameliorates memory impairment in zebrafish and rats: promoting the expression of neurotrophic factors and suppressing oxidative stress
Abstract
Walnut peptide, a low molecular weight peptide separated from walnuts by enzymatic hydrolysis, is considered as a potential nutraceutical with a variety of biological activities. In this study, we characterized the walnut peptide prepared by alkaline protease hydrolysis and evaluated its neuroprotective effect in zebrafish and rat models of memory disorders. Series of concentrations of the walnut peptide were orally administered to zebrafish and rats to examine its impact on the behavior and biochemical indicators. The results showed that the oral administration of walnut peptide significantly ameliorated the behavioral performance in zebrafish exposed to bisphenol AF (1 μg mL−1) and rats exposed to alcohol (30% ethanol, 10 mL kg−1). Furthermore, the walnut peptide upregulated the expression of neurotrophic-related molecules in zebrafish, such as the brain-derived neurotrophic factor (BDNF) and the glial cell-derived neurotrophic factor (GDNF). In the rat brain, the walnut peptide increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while dramatically reduced malondialdehyde (MDA) level. Together, these findings elucidated that the walnut peptide might partially offset the declarative memory deficits via regulation of neurotrophic-related molecule expression and promotion of the antioxidant defense ability. Therefore, walnut peptide holds the potential for development into functional foods as a nutritional supplement for the management of certain neurodegenerative disorders.