Lactobacillus reuteri JCM 1112 ameliorates chronic acrylamide-induced glucose metabolism disorder via the bile acid–TGR5–GLP-1 axis and modulates intestinal oxidative stress in mice†
Abstract
Acrylamide (AA) is a toxic food contaminant that has been reported to cause glucose metabolism disorders (GMD) at high doses. However, it is unclear whether chronic low-dose AA can induce GMD and whether probiotics can alleviate AA-induced GMD. Here, C57BL/6N mice were orally administered with 5 mg per kg bw AA for 10 weeks, followed by another 3 weeks of glucagon-like peptide-1 (GLP-1) analogue (dulaglutide) treatment. Chronic low-dose AA exposure increased the blood glucose level and decreased serum insulin and GLP-1 levels, whereas dulaglutide treatment decreased the blood glucose level and increased the serum insulin level in AA-exposed mice. Then, mice were administered with AA or AA + INT-777 (Takeda G-protein-coupled receptor 5 (TGR5) agonist) for 10 weeks. INT-777 treatment reversed AA-induced downregulation of ileal TGR5 and proglucagon (PG) gene expression and decreased the serum GLP-1 level. These findings indicated that chronic low-dose AA induced GMD via inhibiting the TGR5–GLP-1 axis. Finally, mice were administered with AA for 10 weeks, followed by another 3 weeks of Lactobacillus reuteri JCM 1112 supplementation. L. reuteri supplementation significantly increased serum glucose, insulin and GLP-1 levels, upregulated ileal TGR5 and PG gene expression, and effectively restored the imbalance of bile acid (BA) metabolism in AA-exposed mice, demonstrating that L. reuteri ameliorates chronic AA-induced GMD via the BA–TGR5–GLP-1 axis. In addition, L. reuteri significantly enhanced ileal superoxide dismutase and catalase activities and total antioxidant capacity, thereby preventing chronic AA-induced oxidative stress. Our research provides new insights into the GMD toxicity of chronic low-dose AA and confirms the role of probiotics in alleviating AA-induced GMD.