Quercetin ameliorates neuroinflammatory and neurodegenerative biomarkers in the brain and improves neurobehavioral parameters in a repeated intranasal amyloid-beta exposed model of Alzheimer's disease†
Abstract
Objectives: The aim of the present study was to study the potential therapeutic effects of quercetin in protection against repeated intranasal exposure of an amyloid-beta-induced mouse model. Methods: Mice received intranasal Aβ1–42 (5 μg/10 μL) exposure once daily for seven consecutive days. Quercetin was orally administered to them at 30 mg kg−1 and 100 mg kg−1 doses for one week starting from day five following Aβ1–42 peptide administration. Following this, the animals were evaluated for neurobehavioral parameters using a Morris water maze test and a novel object recognition test. Further to this, the biomarkers for neuroinflammation and neurodegeneration were evaluated in the hippocampus and cortex regions of the brain in these animals. Results: Multiple exposures to intranasal Aβ led to a significant decline in the learning and cognitive memory of the animals, whereas oral treatment with quercetin at dosages of 30 and 100 mg kg−1 alleviated Aβ-induced effects. Quercetin treatment significantly reduced Aβ accumulation, oxidative stress and proinflammatory cytokine biomarkers in the brain. In addition, it also alleviated the activation of astrocytic biomarkers, amyloid precursor protein and phosphorylated-tau proteins in the brain. Conclusion: Quercetin was found to be a potent antioxidant, anti-inflammatory compound with protection against neurodegenerative damage and improved learning and cognitive memory in a repeated Aβ-exposure model of AD.