Issue 21, 2024

Acute supplementation with a curcuminoid-based formulation fails to enhance resting or exercise-induced NRF2 activity in males and females

Abstract

Purpose: Exercise and (poly)phenols may activate nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that coordinates antioxidant synthesis. The purpose of this study was to determine whether curcuminoid supplementation augments resting and exercise-induced NRF2 activity. Methods: In a double-blinded, randomised, between-subjects design, 14 males and 12 females performed plyometric exercise (100 drop jumps, 50 squat jumps) following 4 d supplementation with a curcuminoid-based formulation (CUR + EX; n = 13; ∼200 mg d−1 curcuminoids) or a placebo (PLA + EX; n = 13). NRF2/DNA binding in peripheral blood mononuclear cells, plasma glutathione peroxidase (GPX), and plasma cytokines (interleukin-6 [IL-6], tumour necrosis factor-alpha [TNF-α]) were measured pre-, post-, 1, 2 h post-exercise. Curcuminoid metabolites were measured 0, 1, 2 h post-administration of a single bolus. Results: Total area under the curve for total curcuminoid metabolites was greater in CUR + EX (p < 0.01), with bioavailability peaking at 2 h post administration (CUR + EX: [0 h] 80.9 ± 117 nM [1 h] 76.6 ± 178.5 nM [2 h] 301.1 ± 584.7 nM; PLA + EX: [0 h] 10.4 ± 1.6 [1 h] 8.5 ± 2.6 [2 h] 10.6 ± 2.1). NRF2 activity did not increase in PLA + EX (p = 0.78) or CUR + EX (p = 0.76); however, curcuminoid metabolite concentrations did positively predict NRF2/DNA binding (R2 = 0.39; p = 0.02). Exercise increased IL-6 (p = 0.03) but TNF-α was unresponsive (p = 0.97) and lower across PLA + EX (p = 0.03). GPX activity was higher in CUR + EX (p < 0.01) but not in PLA + EX (p = 0.94). Conclusion: Supplementation with a curcuminoid-based formulation failed to augment resting or exercise-induced NRF2/DNA binding; however, higher concentrations of curcuminoid metabolites predicted NRF2/DNA binding response, suggesting effects may be dependent on bioavailability.

Graphical abstract: Acute supplementation with a curcuminoid-based formulation fails to enhance resting or exercise-induced NRF2 activity in males and females

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2024
Accepted
06 Oct 2024
First published
07 Oct 2024
This article is Open Access
Creative Commons BY-NC license

Food Funct., 2024,15, 10782-10794

Acute supplementation with a curcuminoid-based formulation fails to enhance resting or exercise-induced NRF2 activity in males and females

J. Thorley, A. Alhebshi, A. Rodriguez-Mateos, Z. Zhang, S. J. Bailey, N. R. W. Martin, N. C. Bishop and T. Clifford, Food Funct., 2024, 15, 10782 DOI: 10.1039/D4FO02681K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements