Antioxidant and anti-inflammatory peptides in dry-fermented sausages fermented with Staphylococcus simulans QB7†
Abstract
This study focused on investigating the impacts of Staphylococcus simulans QB7 (S. simulans QB7) on the generation of antioxidant and anti-inflammatory peptides in dry-fermented sausages and the associated mechanisms by in silico. S. simulans QB7 remarkably increased (P < 0.05) the peptide concentration, antioxidant, and anti-inflammatory capacity of peptide extracts. There were 29 peptide sequences with potential activities of antioxidation and anti-inflammation according to BIOPEP-UWM prediction. Molecular docking results indicated that peptide GPGPWG can bind to Kelch-like ECH-associated protein 1 (Keap1) with highest interaction energy, while peptide ANPILEAFG showed highest interaction energy towards p65, I kappa B kinase 2 (IKK-β), c-Jun N-terminal kinases (JNK), and p38 kinases (p38) due to form salt bridge, h-bond, and pi-alkyl. These results suggested that S. simulans QB7 promoted antioxidant and anti-inflammatory peptide generation within dry-fermented sausages.